

Fiji Climate Summary

November 2025

**ISO 9001:2015
certified Climate
Services**

Issued: December 5, 2025
Next Issue: January 7, 2026

Since : August 1980*

Volume 46 : Issue 11

1. IN BRIEF

Typical wet season rainfall was observed across most parts of the country in November. Rainfall ranged from *below average* to *well above average*. Most stations recorded wetter than usual conditions. Penang Mill, Dobuilevu, Ono-i-Lau, Savusavu Airfield, and Matei Airfield received more than twice their normal monthly rainfall. Yasawa-i-Rara and Labasa Airfield recorded more than three times their usual totals, while Vanuabalavu recorded four times its normal rainfall. Rarawai Mill (Ba), Lakeba, and Rotuma received *near normal* rainfall, while Vunisea was the only station with below normal rainfall.

Overall, out of the 25 rainfall monitoring stations that reported in during the compilation of this bulletin, 8 station reported *well above average*, 3 *average*, 13 *above average*, and 1 *below average* rainfall (Table 2, Figures 1-5). November's highest rainfall of 591.5mm was recorded at Levuka, followed by 590.8mm at Labasa Airfield, 578.5mm at Dobuilevu, 536.5mm at Navua, and 532.3mm at Monasavu.

On temperatures, the month's warmest day-time temperature of 36.7°C was observed in Momi on the 8th, followed by RKS Lodoni with 36.3°C on the 23rd, and Rarawai Mill (Ba) with 36.2°C on the 1st. The month's lowest night-time temperature of 13.5°C was recorded at Nadarivatu on the 8th, followed by Monasavu with 15.5°C on the 11th, Labasa Airfield with 15.9°C on the 25th, and Vanuabalavu with 17.4°C on the 9th.

At Nadi Airport, Matei Airfield, and Savusavu Airfield, the winds were mostly predominantly southeasterly, while easterly winds were dominant at Nausori Airport (Figure 8).

Above normal sea surface temperature anomalies were recorded across Fiji waters during November (Figure 9). *Above normal* sea level anomalies persisted across the Fiji Group during November (Figure 11).

Flash flooding was reported in the Central, Northern, and Western Divisions, and a landslide in the Central Division, following heavy and continuous rainfall (Figures 12a-12t). Hail was also recorded in some places (Figures 13a-13d).

2. WEATHER PATTERNS

November marked the start of Fiji's wet and cyclone season and was characterised by warmer temperatures, high humidity, and frequent rain. The weakening of the subtropical ridge allowed active troughs of low pressure to dominate, resulting in alternating settled and unsettled conditions across the country.

Early in the month, moist easterly winds brought brief showers to windward areas, while leeward regions saw fine mornings and afternoon showers. Very high temperatures were recorded in Ba, reaching 35.9°C on the 1st and 35.8°C on the 2nd. A trough developed over the eastern group and later moved westwards, producing significant rainfall, including 93.7mm at Penang and 94.5mm at Navua on the 4th.

From the 6th to 12th, weak troughs and shifting easterly to northeasterly winds produced occasional showers in the east and settled weather elsewhere. More widespread rain developed on the 8th and 9th as another trough passed through, giving over 50mm in several western and inland locations. A stronger trough arrived on the 13th, causing thunderstorms across the west and then the rest of the

country. Severe thunderstorms on the 15th and 16th brought hail and gusty winds to eastern Viti Levu, with Dobuilevu recording 140.5mm of rain. Although conditions briefly settled, afternoon thunderstorms on the 17th again produced hail in Nadarivatu and parts of Cakaudrove.

Heavy rainfall returned on the 19th as another trough developed over the east. This system weakened on the 20th, but further trough activity from the 22nd to 27th brought widespread rain, strong winds in the Northern Division and Lau/Lomaiviti, and flash flooding, especially in Vanua Levu. Exceptional rainfall on the 24th included 206mm at Labasa and 188.5mm at Saqani. By the 27th, winds shifted to the east and southeast as the trough slowly weakened and lingered through the 29th. On the 30th, southeasterly winds brought trade showers to windward areas while leeward regions had fine weather with afternoon showers.

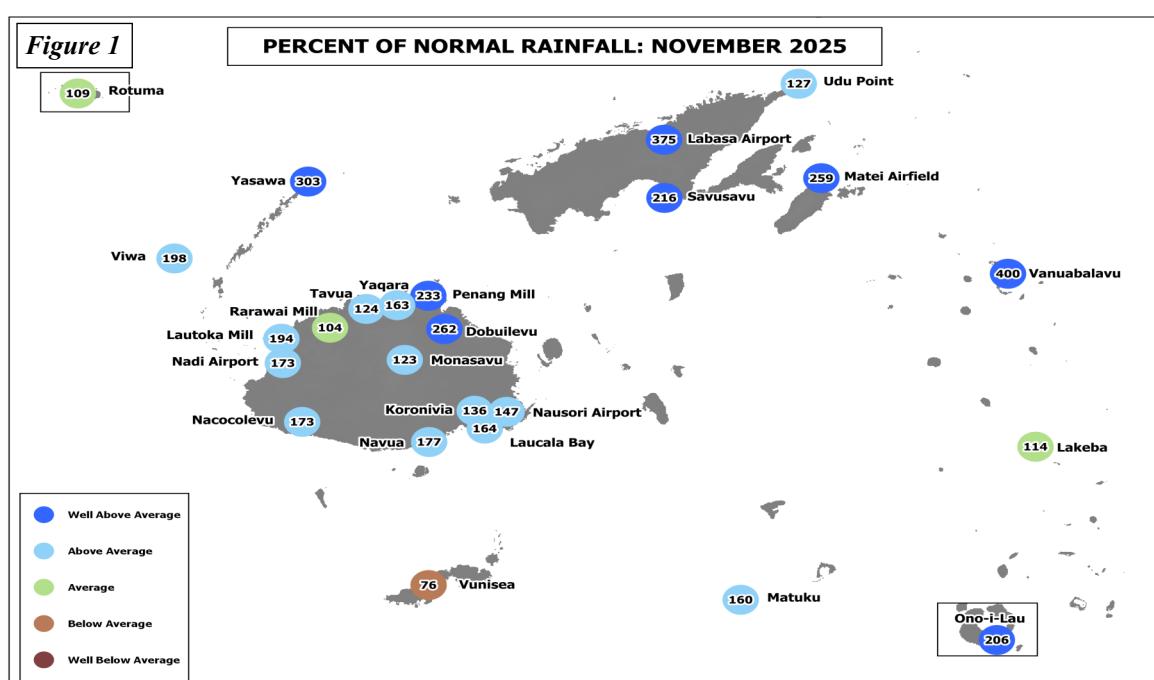
Rotuma experienced changing east to southeast winds and passing low pressure systems, producing a mix of settled and rainy conditions throughout the month.

3. RAINFALL

Overall, rainfall activity increased during the month, ranging from *below average* to *well above average*. Most stations experienced wetter than usual conditions, with Penang Mill, Dobuilevu, Ono-i-Lau, Savusavu Airfield, and Matei Airfield recording more than twice their normal monthly rainfall. Yasawa-i-Rara and Labasa Airfield recorded more than three times their normal monthly rainfall, while Vanuabalavu recorded four times its normal monthly rainfall. Rarawai Mill (Ba), Lakeba, and Rotuma received *near normal* rainfall, while Vunisea was the only station that recorded *below normal* rainfall.

Overall, out of the 25 rainfall monitoring stations that reported in during the compilation of this bulletin, 8 stations reported *well above average*, 3 *average*, 13 *above average*, and 1 *below average* rainfall (Table 2, Figures 1-5).

The month's highest rainfall of 591.5mm was recorded at Levuka, followed by 590.8mm at Labasa Airfield, 578.5mm at Dobuilevu, 536.5mm at Navua, 532.3mm at Monasavu, 527.5mm at Vanuabalavu, 508.5mm at Matei Airfield and 459.5mm at Nasinu. On the other hand, Sigatoka recorded the month's lowest total monthly rainfall of 84.5mm, followed by Vunisea with 115.7mm, Tavua with 147.5mm, Yaqara with 148.0mm, Lakeba with 152.8mm, and Rarawai Mill (Ba) with 161.7mm (Table 2).


The highest 24-hour rainfall of 209.0mm was recorded at Levuka on the 8th, followed by Labasa Airfield with

206.0mm on the 24th, Matei Airfield with 188.0mm on the 24th, Vanuabalavu with 156.0mm on the 24th, Dobuilevu with 141.0mm on the 14th, and Savusavu Airfield with 101.0mm on the 24th.

Notably, a series of low-pressure troughs forming during the month caused flash flooding at several low-level crossings in the Central Division on the 16th and 19th, the Western Division on the 24th and 26th, and the Northern Division on the 25th. This led to the closure of crossings, making some areas inaccessible (Figures 12a - 12t).

Monasavu recorded the highest number of rain days (rainfall ≥ 0.1 mm) with 29 days, followed by Nausori Airport and Navua both with 25 days, Labasa Airfield, Nasinu, RKS Lodoni and Laucala Bay (Suva) all with 24 days, Levuka and Koronivia both with 23 days, and Savusavu Airfield and Matuku both with 21 days. Consequently, Rarawai Mill (Ba) recorded the least number of rainfall days with 9 days, followed by Lautoka Mill and Yaqara both with 11 days, Tavua with 13 days, Sigatoka, Lakeba, Ono-i-Lau and Momi all with 14 days.

Labasa Airfield and Vanuabalavu recorded their highest daily rainfall of 206.2mm and 155.6mm, respectively, since observations began in 1956 and 1985. Vanuabalavu also recorded its highest monthly rainfall of 527.5mm since observations began in 1985 (Table 1).

Normal: Long term average from 1991 to 2020
 Well Below Average: Rainfall less than 40% of normal
 Below Average: Rainfall between 40 to 79%
 Rain Day: Rainfall ≥ 0.1 mm

Average: Rainfall between 80 to 119%
 Above Average: Rainfall between 120 to 199%
 Well Above Average: Rainfall greater than or equal to 200% of normal

4. AIR TEMPERATURES

A. Maximum Day-time Air Temperatures

Generally *near to above normal* day-time temperatures were observed across the country during the month. Out of the 21 climate stations that reported in time for the analysis of data, 10 recorded anomalies $\geq +0.5^{\circ}\text{C}$, 9 recorded anomalies within $\pm 0.5^{\circ}\text{C}$ and 2 recorded anomalies $\leq -0.5^{\circ}\text{C}$.

On average, the warmest days were recorded at RKS Lodoni with 33.6°C , followed by Momi with 33.5°C , Rarawai Mill (Ba) with 32.5°C , Korolevu with 32.2°C , Yasawa-i-Rara and Yaqara both with 31.6°C , and Viwa and Labasa Airfield both with 31.5°C . Consequently, Nadarivatu recorded the coolest days on average with 25.1°C , followed by Monasavu with 25.6°C , Nacocolevu with 27.6°C , Ono-i-Lau with 29.0°C , Vunisea with 29.2°C , Matuku with 29.4°C , and Matei Airfield with 29.5°C .

The highest day-time temperature of 36.7°C was observed in Momi on the 8th, followed by RKS Lodoni with 36.3°C on the 23rd, Rarawai Mill (Ba) with 36.2°C on the 1st, Korolevu with 34.7°C on the 12th, Levuka with 34.5°C on the 14th, and Nacocolevu, Yasawa-i-Rara, and Savusavu Airfield all with 34.0°C on the 2nd, 7th and 23rd, respectively.

The coolest daytime temperature was observed at Nacocolevu with 20.9°C on the 26th, followed by Nadarivatu with 22.0°C on the 26th, Monasavu with 22.5°C on the 5th, Nadi Airport with 23.8°C on the 23rd, Matuku with 24.8°C on the 26th and Koronivia with 25.4°C on the 16th.

There were no new day-time temperature records established during the month.

B. Minimum Night-time Air Temperatures

Above to below normal night-time temperatures were recorded at majority of the climate stations during November. For the 21 stations that reported in, 6 recorded anomalies $\geq +0.5^{\circ}\text{C}$, 9 recorded anomalies within $\pm 0.5^{\circ}\text{C}$ and 6 recorded anomalies $\leq -0.5^{\circ}\text{C}$.

The coolest nights on average were at Nadarivatu with 17.2°C , followed by Monasavu with 18.4°C , Vunisea with 20.1°C , Lakeba with 20.4°C , Matei Airfield with 20.6°C , and Vanuabalavu with 20.9°C . Consequently, on average, the warmest nights were observed at RKS Lodoni with 25.5°C , Rotuma with 25.1°C , Momi with 24.9°C , Viwa with 24.2°C , Matuku with 23.9°C , and Levuka with 23.8°C .

The month's coolest night time temperature was observed at Nadarivatu on the 8th, with a temperature of 13.5°C , followed by Monasavu with 15.5°C on the 11th, Labasa Airfield with 15.9°C on the 25th, Vanuabalavu with 17.4°C on the 9th, Lakeba and Vunisea both with 18.0°C on the 2nd and 6th, respectively, and Rarawai Mill (Ba) with 18.3°C on the 5th.

The warmest night-time temperature was recorded at Nausori Airport with 28.9°C on the 4th, followed by 28.5°C at RKS Lodoni on the 2nd, Momi with 26.6°C on the 21st, Lakeba with 26.1°C on the 24th, and Rotuma, Viwa and Savusavu airfield all with 26.0°C on the 1st, 2nd and 21st, respectively.

Nausori Airport recorded its highest daily minimum temperature of 28.9°C since observations began in 1956 (Table 1).

TABLE 1. CLIMATE RECORDS ESTABLISHED IN NOVEMBER 2025

<u>Element</u>	<u>Station</u>	<u>Observed (record)</u>	<u>On</u>	<u>Rank</u>	<u>Previous (record)</u>	<u>Year</u>	<u>Records Began</u>
Daily Maximum Rainfall	Labasa Airfield	206.2mm	24 th	New High	153.0mm	1975	1956
Daily Maximum Rainfall	Vanuabalavu	155.6mm	24 th	New High	114.2	1996	1985
Monthly Total Rainfall	Vanuabalavu	527.5mm		New High	440.7	1990	1985
Daily Minimum Temperature	Nausori Airport	28.9°C	4 th	New High	26.6°C	1976	1956

Note: All comparisons in this summary are with respect to "Climatic Normals". This is defined to be the average climate condition over a 30-year period. Fiji uses 1991-2020 period as its "climatic normal" period.

TABLE 2. DAILY CLIMATE REPORTING SITES: SUMMARY FOR NOVEMBER 2025

	TOTAL	RAINFALL				AIR TEMPERATURES						SUNSHINE		
		* MM	RAIN % +	MAX. MM	FALL ON	AVERAGE DAILY			EXTREME			TOTAL C ON	* HRS	% C ON
						MAX.	#	MIN.	#	MAX.	MIN.			
NADI AIRPORT	219.1	173	15	47	26	30.4	-0.5	22.3	0.0	33.2	19	20.3	10	197 91
LAUCALA BAY	406.1	164	24	64	16	29.7	0.1	23.4	0.0	31.4	19	20.7	18	134 84
NACOCOLEVU RESEARC	218.7	173	17	34	16	27.6	-3.1	21.8	0.9	34.0	2	20.0	1	170 117
ROTUMA ISLAND	339.2	109	20	74	26	31.1	0.3	25.1	0.2	33.0	13	23.5	26	178 98
VIWA ISLAND	238.7	198	16	50	18	31.5	0.3	24.2	-0.1	33.1	3	22.4	5	
YASAWA-I-RARA	302.7	303	17	82	23	31.6	0.9	22.5	-1.3	34.0	7	20.6	9	
UDU POINT WEATHER	265.8	127	16	75	24	U/S		21.7	-2.4	U/S		19.6	2	
NABOUWALU	OBSERVER ON LEAVE													
LABASA AIRFIELD	590.8	375	24	206	24	31.5	-0.1	22.0	0.5	33.8	7	15.9	25	
SAVUSAVU AIRFIELD	390.7	216	21	101	24	29.7	0.4	23.4	0.4	34.0	23	21.1	17	
KORONIVIA RESEARCH	337.2	136	23	56	16	29.8	0.7	22.6	0.5	31.9	23	19.9	17	
NAUSORI AIRPORT	350.2	147	25	76	16	29.8	0.8	22.6	0.5	31.6	12	19.8	17	
NAVUA AWS	536.5	177	25	95	4	29.8	1.3	21.8	0.1	32.2	18	18.9	15	
MONASAVU HYDRO DAM	532.3	123	29	82	4	25.6	1.2	18.4	0.6	27.0	13	15.5	11	
FSC LAUTOKA MILL	253.2	194	11	68	3	31.1	0.3	22.9	0.2	33.4	1	21.3	12	
FSC RARAWAI MILL	161.7	104	9	53	8	32.5	0.5	21.7	0.4	36.2	1	18.3	5	
FSC PENANG MILL	343.2	233	16	94	23	30.6	0.0	23.1	0.2	32.1	7	20.6	18	
MATEI AIRFIELD	508.5	259	19	188	24	29.5	0.3	20.6	-2.8	31.6	23	18.6	9	
VANUABALAVU	527.5	400	17	156	24	29.7	0.6	20.9	-2.8	31.1	15	17.4	9	
LAKEBA	152.8	114	14	34	8	29.8	0.5	20.4	-2.9	31.5	13	18.0	2	
VUNISEA	115.7	76	18	28	15	29.2	0.5	20.1	-2.5	30.6	29	18.0	16	
MATUKU	186.7	160	21	40	22	29.4	0.3	23.9	0.7	31.2	12	22.1	28	
ONO-I-LAU	218.0	206	14	45	16	29.0	0.7	U/S		30.9	13	U/S		
WAINIKORO AWS	U/S			U/S		U/S		U/S		U/S		U/S		
SAQANI AWS	U/S			U/S		U/S		U/S		U/S		U/S		
SEAQAQA AWS	U/S			U/S		U/S		U/S		U/S		U/S		
KUBULAU AWS	U/S			U/S		U/S		U/S		U/S		U/S		
RKS LODONI AWS	451.5	24	69	24	33.6	25.5		36.3	23	23.1	15			
LOMAIVUNA AWS	U/S			U/S		U/S		U/S		U/S		U/S		
KOROLEVU AWS	222.5	20	48	26	32.2	22.4		34.7	12	19.6	15			
NADARIVATU AWS	414.5	18	86	23	25.1	17.2		27.2	7	13.5	8			
SIGATOKA AWS	84.5	14	16	23	30.0	21.6		31.9	22	19.7	15			
KEYASI AWS	U/S			U/S		U/S		U/S		U/S		U/S		
MOMI AWS	237.4	14	58	23	33.5	24.9		36.7	8	23.3	9			
YAQARA AWS	148.0	163	11	40	23	31.6	23.1		33.9	2	20.6	8		
LEVUKA AWS	591.5	23	209	8	31.2	23.8		34.5	14	20.8	25			
DOBUILEVU TB3	578.5	262	20	141	14									
NASINU TB3	459.5	24	83	16										
TAVUA TB3	147.5	124	13	53	23									

MEAN	TEMPERATURE (C)			HUMIDITY		WIND	
	DRY	WET	RH%	VP		KT	
NADI AIRPORT	26.3	27.8	23.8	71	27.9	6.4	
LAUCALA BAY	26.5	27.4	25.0	79	27.3	6.0	
NACOCOLEVU RESEARC	24.7	27.9	25.5	83	28.1		
ROTUMA ISLAND	28.1	28.8	26.7	85	29.6	7.5	
VIWA ISLAND	27.9	29.2	25.9	77	30.3		
YASAWA-I-RARA	27.0	28.7	26.0	81	29.4		
UDU POINT WEATHER	U/S	27.7	25.0	80	27.8		
NABOUWALU	OBSERVER ON LEAVE						
LABASA AIRFIELD	26.7	28.2	25.0	77	28.6	8.6	
SAVUSAVU AIRFIELD	26.5	27.4	24.9	81	27.3	6.5	
KORONIVIA RESEARCH	26.2	27.1	25.0	85	26.8		
NAUSORI AIRPORT	26.2	26.8	24.7	83	26.4	4.4	
NAVUA (AWS)	25.8						
MONASAVU HYDRO DAM	22.0	22.1	21.5	96	19.9		
FSC LAUTOKA MILL	27.0	25.9	25.6	105	25.0		
FSC RARAWAI MILL	27.1	29.4	29.0	97	30.7		
FSC PENANG MILL	26.9	28.3	25.1	77	28.8		
MATEI AIRFIELD	25.1	27.7	25.0	80	27.8	8.3	
VANUABALAVU	25.3	27.6	24.6	78	27.6		
LAKEBA	25.1	28.0	24.9	78	28.3		
VUNISEA	24.6	25.5	22.0	74	24.4		
MATUKU	26.7	26.9	24.5	82	26.5		
ONO-I-LAU	U/S	26.9	24.5	83	26.5		

MEAN TEMPERATURE IS (MAX+MIN)/2; WIND IS MEAN SPEED AT 06,12,18,24 HOURS.

\$: SOLAR RADIATION CALCULATED FROM SUNSHINE DURATION. # : DEPARTURE FROM LONG-TERM AVERAGES (1991-2020). + : NUMBER OF DAYS WITH 0.1 MM OR MORE RAIN. * : PERCENT OF LONG-TERM AVERAGES.

BLUE FONT: MISSING RECORDS OF LESS THAN OR EQUAL(≤) TO 5 DAYS. U/S: UNSERVICEABLE

Figure 2

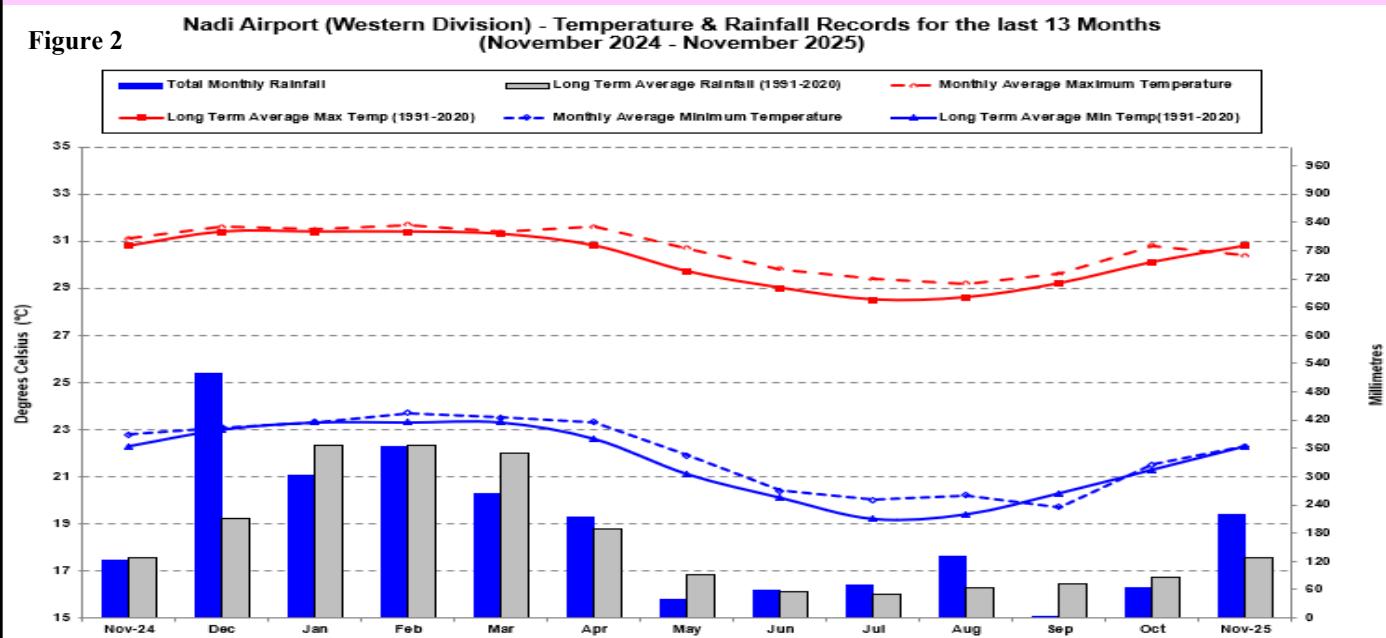


Figure 3

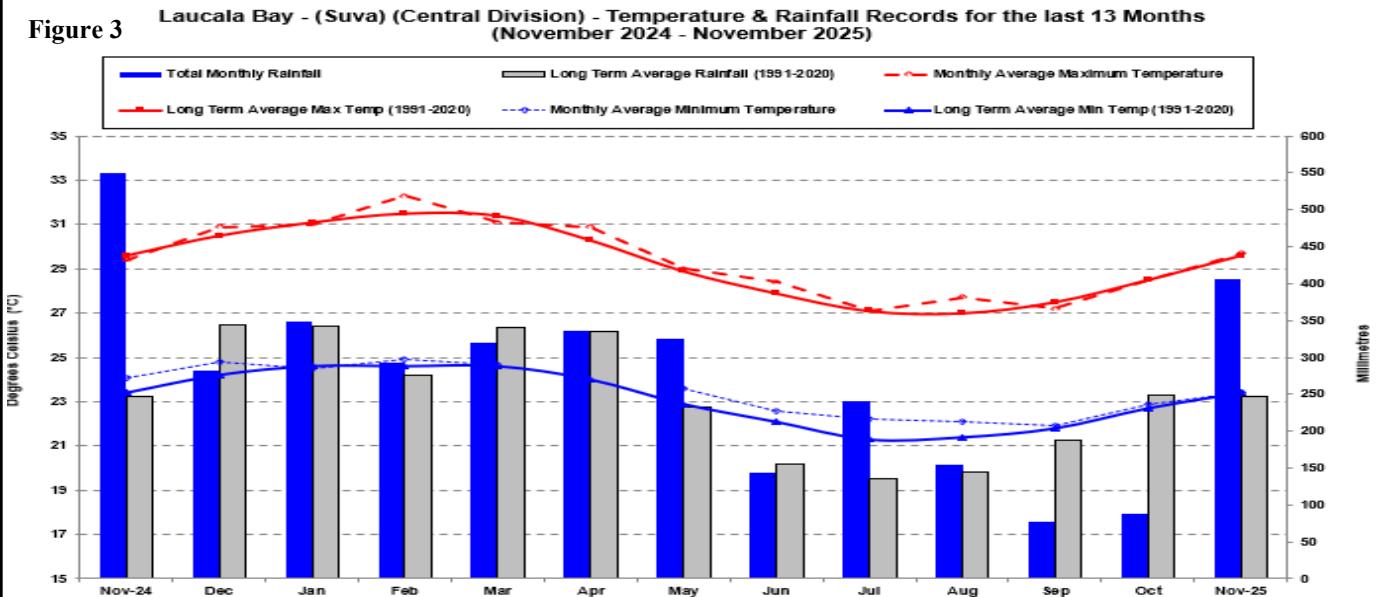


Figure 4

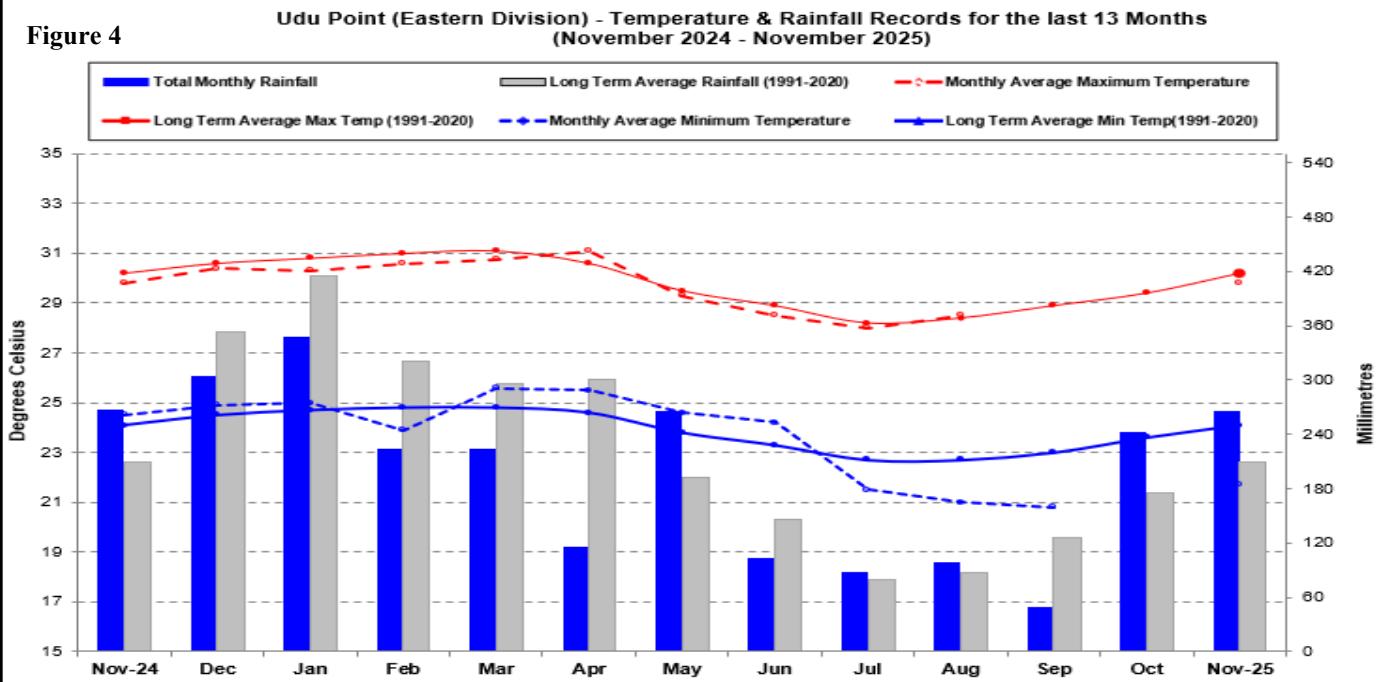
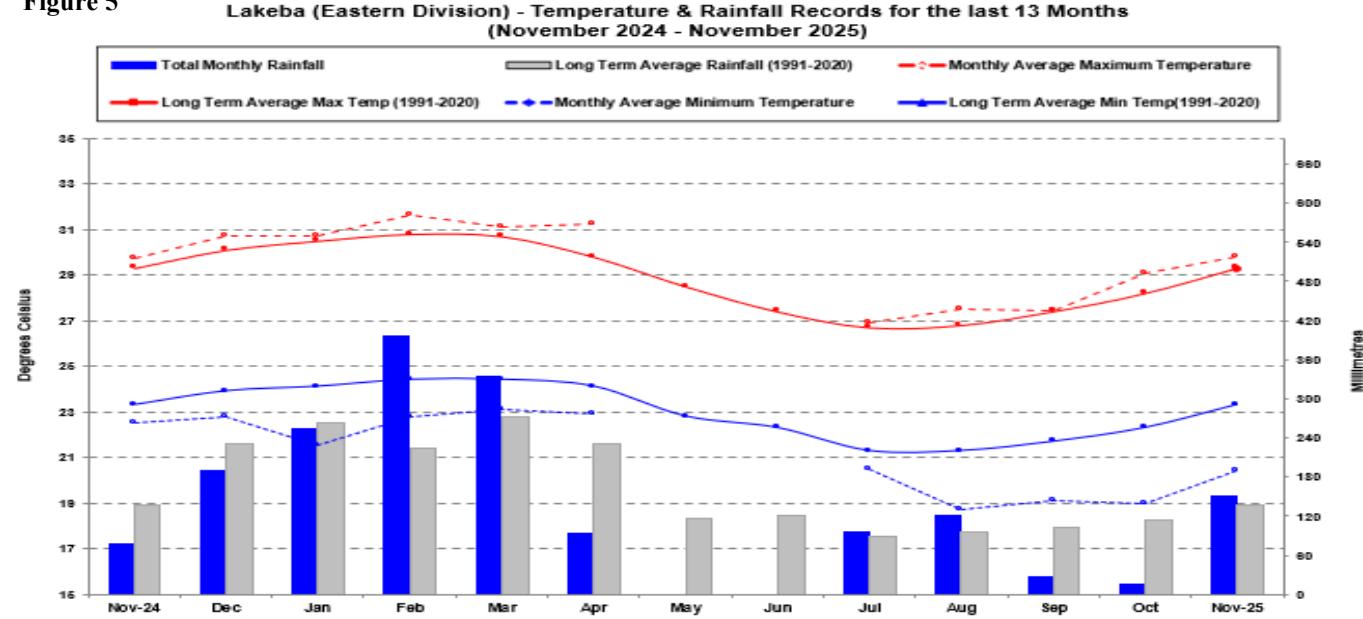



Figure 5

5. DAILY RAISED PAN EVAPORATION

Figure 6

Daily Evaporation for November 2025

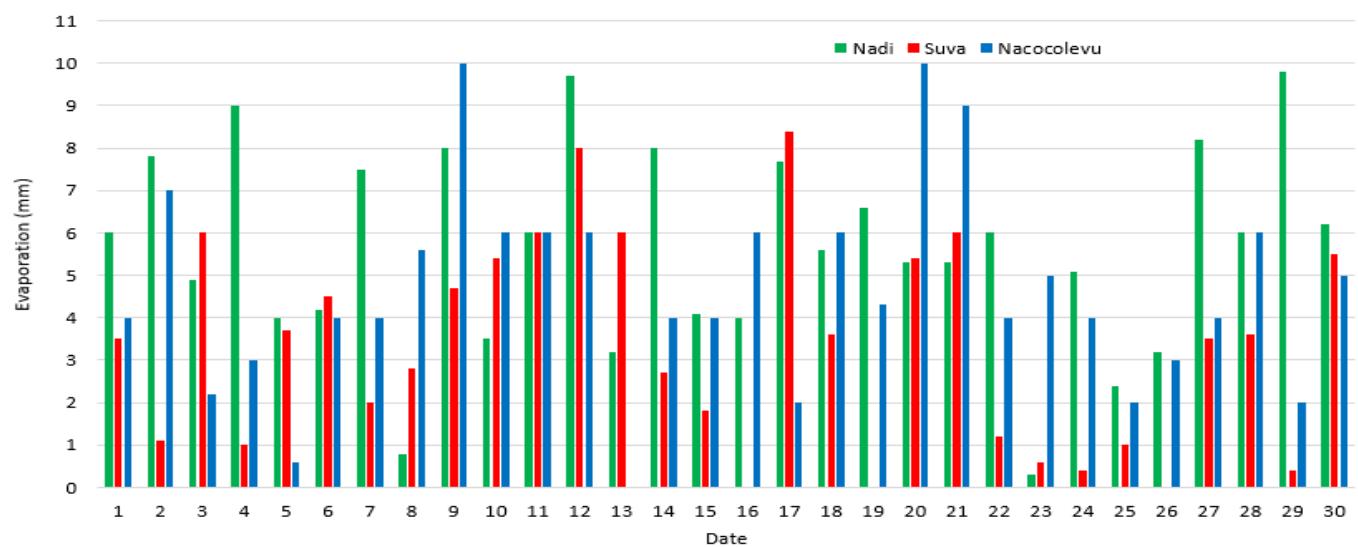
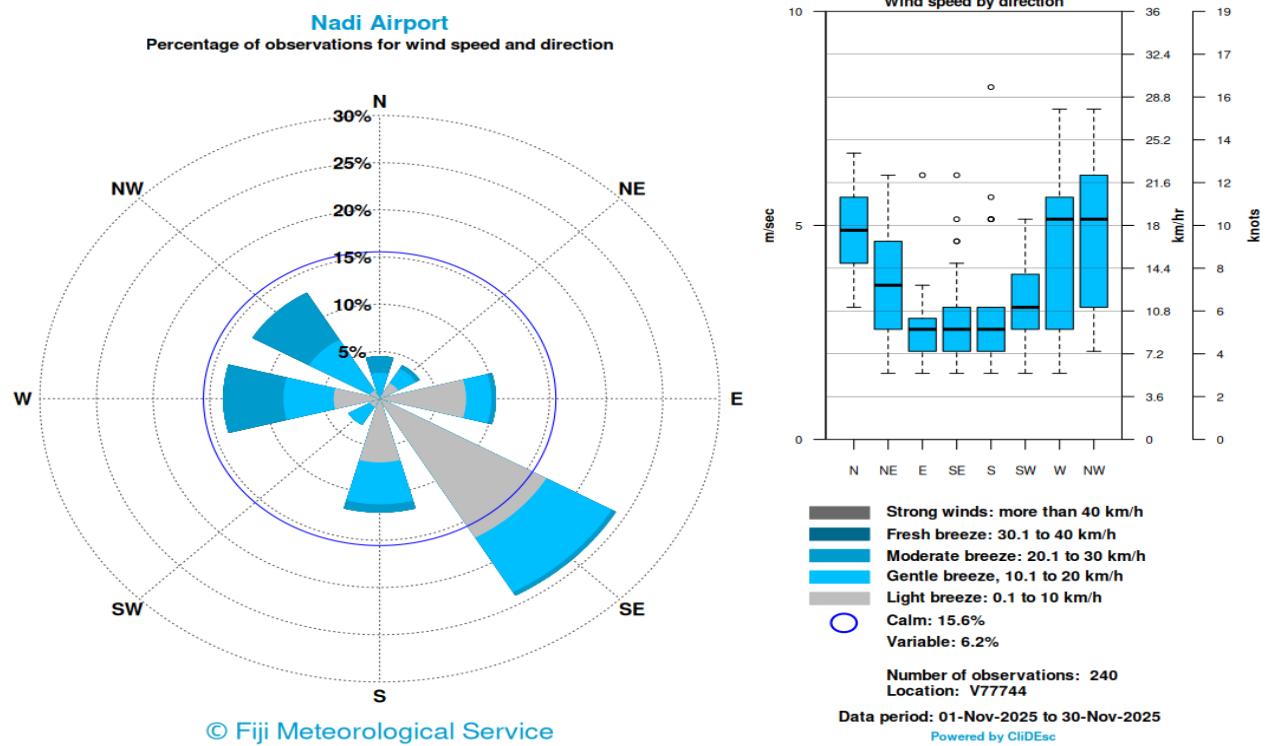
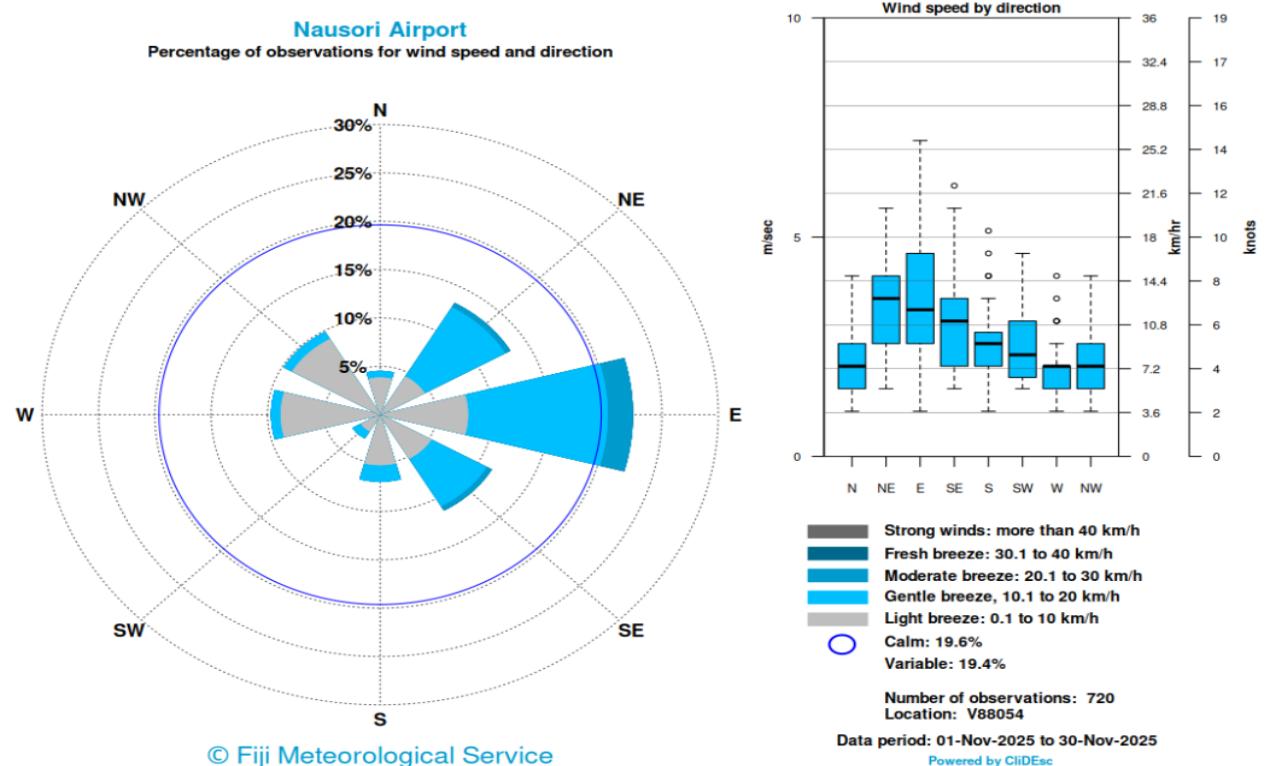
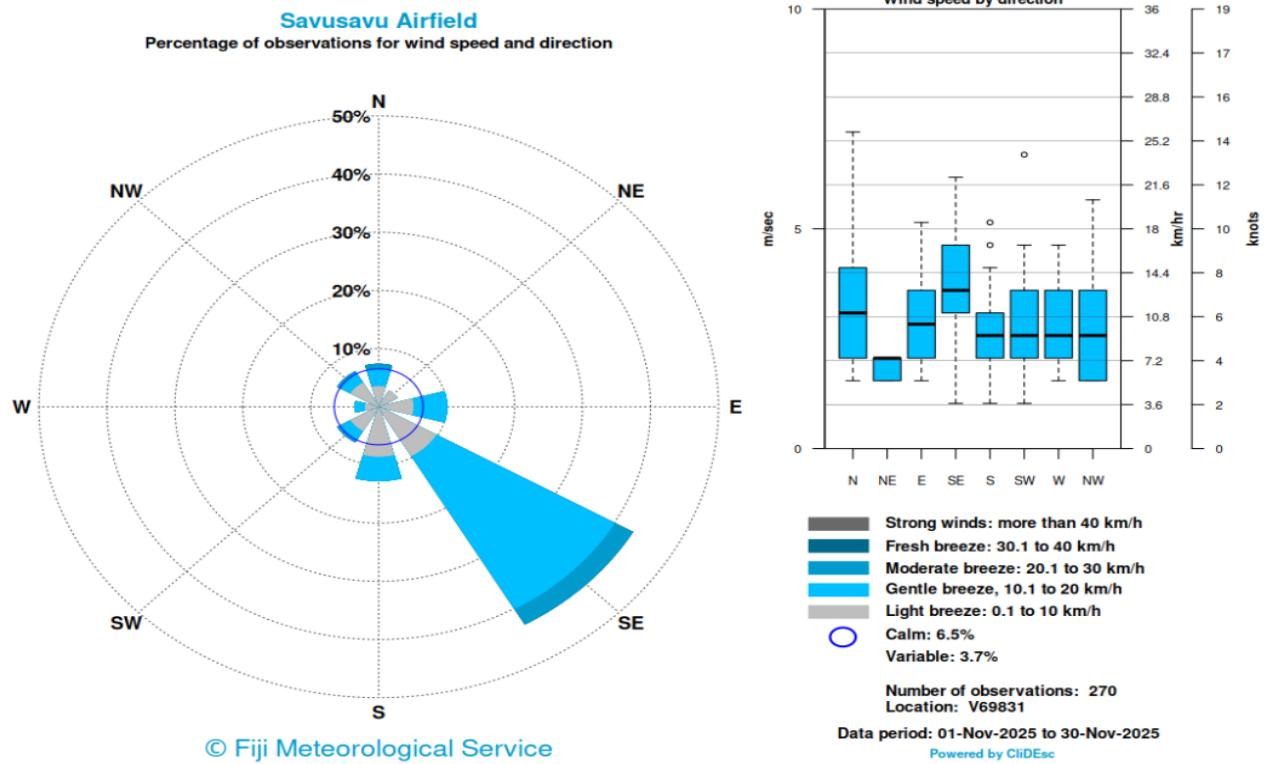



Figure 6: The total monthly raised pan evaporation at Nadi Airport, Laucala Bay (Suva) and Nacocolevu (Sigatoka) were 168.4mm, 98.8mm and 138.7mm, respectively. Nadi's highest daily evaporation was 9.8mm on the 29th with Suva's highest daily evaporation of 8.4mm on the 17th, and Nacocolevu (Sigatoka) recorded its highest of 10.0mm on the 9th and 20th.


6. SOLAR RADIATION

The Nadi solar radiation instrument was unserviceable during the month of November 2025.


7. WIND SUMMARY

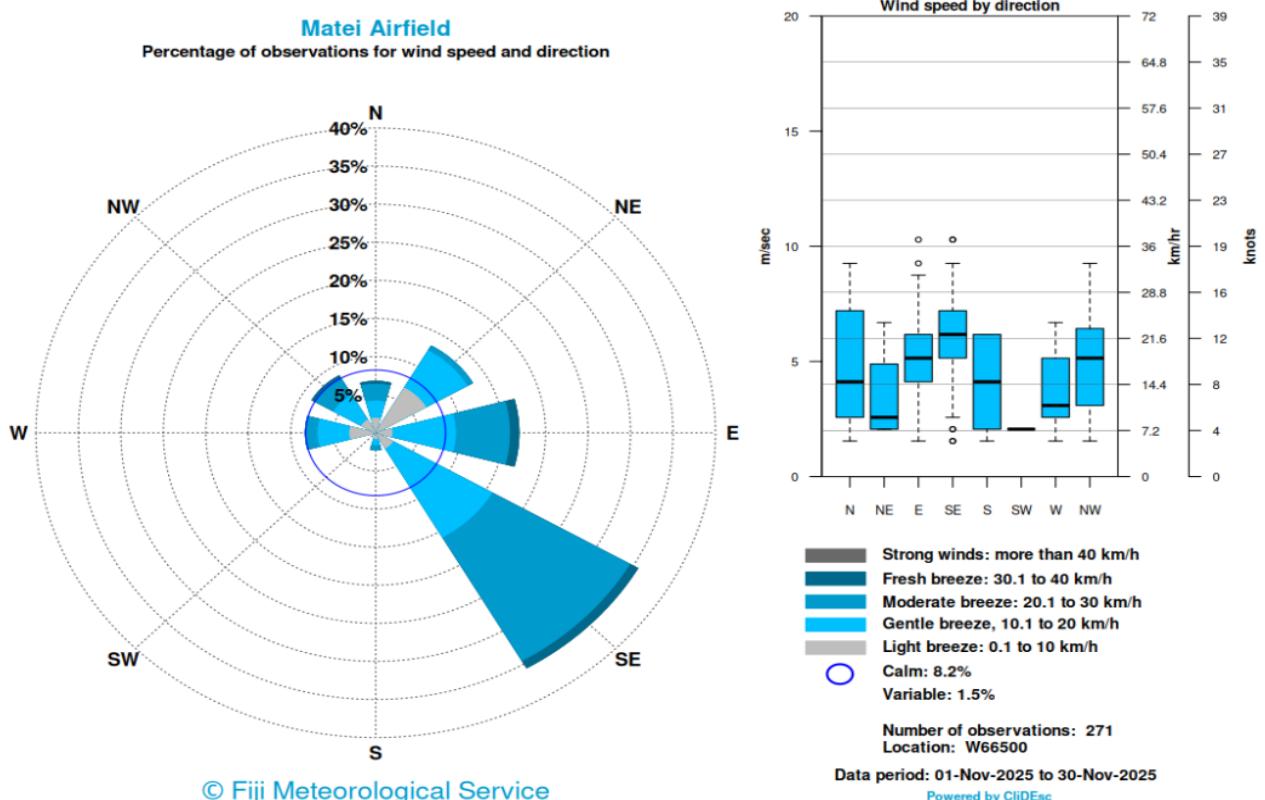

Figure 8a: Nadi's 3 hourly observations recorded southeasterly winds as the most dominant winds during the month, followed by westerly and then northwesterly winds. Wind strength ranged from light to moderate breeze, while 15.6% of observations accounted for calm winds.

Figure 8b: For Nausori Airport's hourly wind observations, easterly winds were most dominant during the month, followed by northeasterly and then southeasterly winds. Wind strength ranged from light to moderate breeze, while 19.6% of observations accounted for calm winds.

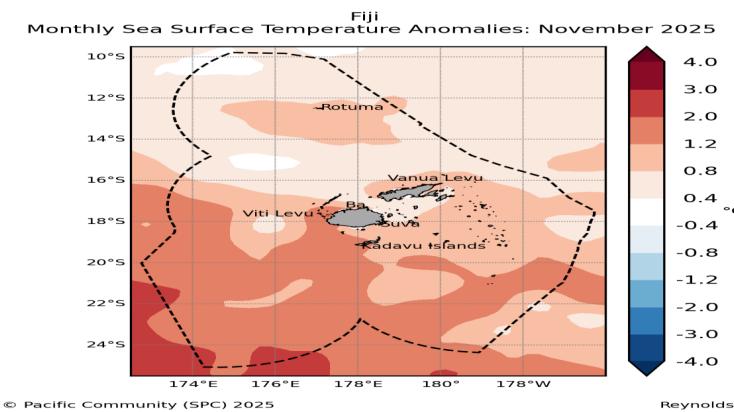


Figure 8c: Southeasterly winds were most dominant at Savusavu Airfield, looking at the hourly observations (0800hrs to 1600hrs) recorded during the month, followed by southerly and then easterly winds. Wind strength ranged from light to moderate breeze, with calm winds observed 6.5% of the time.

Figure 8d: Matei Airfield's hourly wind observations (0800hrs to 1600hrs) had dominant southeasterly winds followed by easterly and then northeasterly winds. Light breeze to fresh breeze were observed, with calm winds recorded 8.2% of the time.

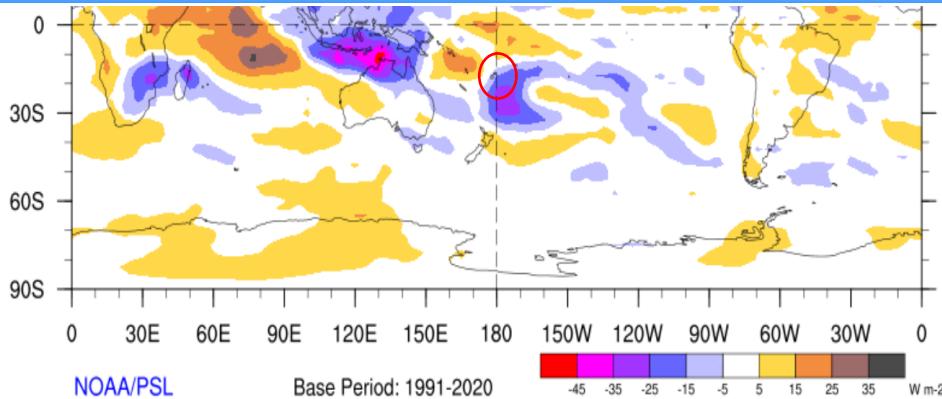

8. SEA SURFACE TEMPERATURE (SST)

Figure 9:

Above normal sea surface temperature anomalies were observed across waters in Fiji, with warm anomalies generally ranging from 0.8 to 2.0°C.

Source: <https://oceanportal.spc.int/explorer>

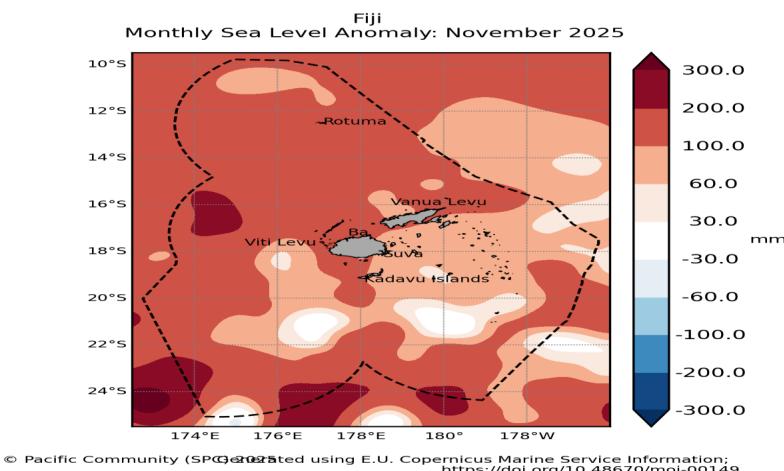

9. CLOUD COVER

Figure 10:

Above normal cloud cover were present over the Fiji Group during November (Fiji in red circle).

Source: <http://www.esrl.noaa.gov/psd/map/clim/olr.shtml>

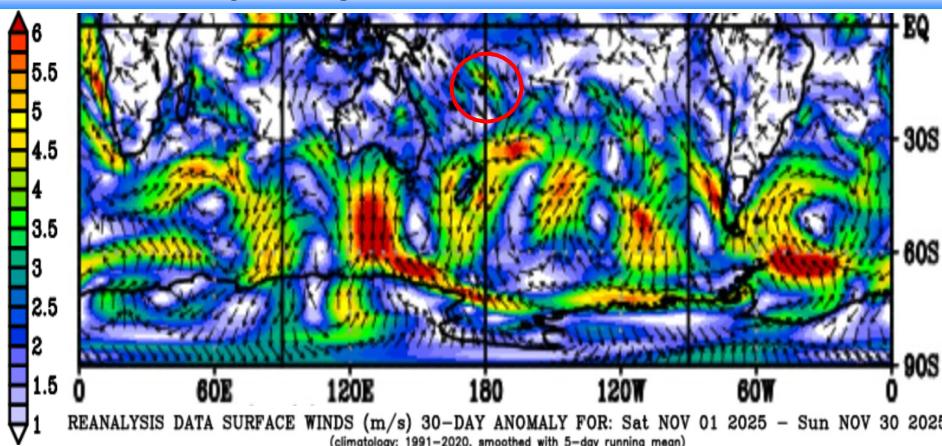

10. SEA LEVEL

Figure 11:

Sea level anomalies were *above normal* across most of the Fiji Group during November.

Source: <https://oceanportal.spc.int/explorer>

11. WIND ANOMALIES

Figure 12:

North westerly winds were observed over the Fiji Group during the month (base period: 1991-2020) (Fiji in red circle).

Source: http://www.esrl.noaa.gov/psd/map/images/rnl/sfcwnd_30b.rnl.html

12. FLASH FLOODING: 16th, 19th, 24th, 25th and 26th

Heavy and continuous rainfall caused flash flooding on several roads and in residential areas in the Central Division on the 16th and 19th. Similar conditions were reported in the Western Division on the 24th, where several roads and crossings were flooded. In the Northern Division, heavy rain on the 25th led to widespread flooding of roads, crossings, and low-lying flood-prone areas. The rain on the 16th also triggered a landslide at Batiniwai Settlement in Caubati. Flash flooding was also observed at the Nadi Bus Stand on the 26th. These events caused the closure of multiple low-level crossings and left some areas inaccessible.

Figure 12a: Surface flooding in the Central Division, Suva on the 16th. Source: Fiji One News

Figure 12b: Flooded residential area in the Central Division, Suva on the 16th. Source: Fiji One News.

Figure 12c: Surface flooding in the Central Division, Suva on the 16th. Source: Fiji One News.

Figure 12d: Flooding at Lobau Village in Navua on the 16th. Source: Fijivillage.

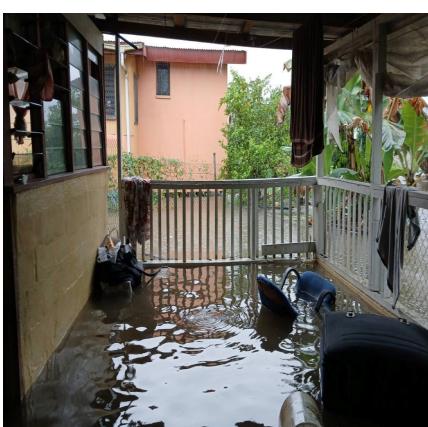


Figure 12e: Flooded home on Omkar Road, Narere on the 16th. Source: FBC News.

Figure 12f: Landslide at Batiniwai Settlement in Caubati on the 16th. Source: Fijivillage.

Figure 12g: Flooding at Railagi Road Bridge on the 19th. Source: Fiji One News

Figure 12h: Flooding at Valelevu Roundabout on the 19th. Source: Fiji Roads Authority.

Figure 12i: Flooding on Karsanji Road on the 19th. Source: Fiji Roads Authority.

Figure 12j: Arolevu Crossing, Nadi, Western Division on the 24th. Source: Fiji Roads Authority

Figure 12k: Raviravi Crossing, Navidamu, Macuata on the 24th. Source: Fiji Roads Authority

Figure 12l: Rewasa Crossing, Rakiraki, Western Division on the 24th. Source: Fiji Roads Authority

Figure 12m: Flooding at Qeleni Bridge, Taveuni on the 25th. Source: Fiji Roads Authority.

Figure 12n: Boca Loop Road, Bulileka, Labasa on the 25th. Source: Fiji Roads Authority.

Figure 12o: Homes in Block 10, Naodamu, Labasa on the 25th. Source: Fiji Times..

Figure 12p: Nasasa, Daku Labasa on the 25th. Source: Radio Fiji Two

Figure 12q: Vunivesi Village, Savusavu on the 25th. Source: Viti FM

Figure 12r: Qelemumu Crossing, Wainikoro, Labasa on the 25th. Source: Fiji Roads Authority.

Figure 12s: Nacula Village, Labasa on the 25th. Source: Fijivillage

Figure 12t: Nadi Bus Stand on the 26th. Source: Sikandar Baadshah

13. HAILSTORM EVENTS

On 16th November, a brief hailstorm occurred in Koronivia, Nausori, early in the morning. The hail began around 1 a.m. and lasted approximately 15 minutes, surprising residents and adding to ongoing unusual weather conditions. The following day, 17th November, a more severe hailstorm affected multiple areas during a severe thunderstorm warning. In Nadarivatu, heavy hail fell accompanied by strong winds and rain, with footage captured at Navai village. In the interior of Vanua Levu, communities including Nabunicibi and Vatuova in Cakaudrove reported ice pellets during short, intense bursts of severe weather. Meanwhile, residents of Nawairuku in Nalawa, Ra, witnessed a hailstorm for the first time, with hailstones striking roofs in the early evening.

Hail is a form of precipitation consisting of solid ice that forms inside thunderstorm. The phenomenon is not common in the tropics because the freezing level is higher as compared to the mid-latitude. So ice particles would melt into rain on its way down because of warm temperature towards the surface.

Meanwhile, on recent events where hail has been observed around the country, it resulted from the presence of active or severe thunderstorms cell which developed from pre-existing moisture content in the atmosphere, good surface heating resulting in warm air forced to rise on mountains/hills or on other local effect.

Ultimately, as warm air rises, it transfers heat from the surface of the earth to the upper levels of the atmosphere. The water vapor it contains begins to cool, releases the heat, condenses and forms cloud through persistent thunderstorms up-draft into extremely cold mid-level in the atmosphere and freeze.

Therefore, this would lead to the lowering of the freezing level which is susceptible for hailstone formation when liquid below freezing collects around a solid object such as dust particle or another hailstone.

Hail falls to the earth when it becomes too heavy for an updraft to keep it up. So on areas along elevated regions and nearby regions where severe thunderstorms were observed, the occurrence of hail would be imminent as the surrounding temperature is not warm enough to melt the ice.

Figure 13a: Hail storm in Koronivia, Nausori on the 16th.
Source: Fiji Times

Figure 13b: Hail storm accompanied by strong winds and rain in Navai, Nadarivatu on the 17th. Source: Fiji Times

Figure 13c: Hail storm in Nawairuku in Nalawa, Ra on the 17th. Source: Gold FM Fiji

Figure 13d: Hailstorm ice collected in Cakaudrove on the 17th. Source: Fiji Times

EXPLANATORY NOTES

Anomalies - denote the departure of an element (rainfall, temperature, sea surface temperature, cloud cover, sea level and wind) from its long-period average value for a particular location.

Trough - an elongated area of low atmospheric pressure that is associated with a cyclone, or low. Sometimes referred to as a 'trough of low pressure'.

Rain - Liquid precipitation in the form of water droplets. Rain falls from dense, continuous clouds, called 'stratiform' clouds.

Showers - precipitation from individual clouds, often characterised by the sudden beginning or ending. Showers fall from 'lumpy looking', 'cauliflower' clouds, called 'cumuloform' clouds.

Trade Winds - the trade winds are the east to southeasterly winds (in the Southern Hemisphere) which affect tropical and subtropical regions.

High pressure systems or anticyclones are atmospheric circulations that rotate anti-clockwise in the Southern Hemisphere. Anticyclones are areas of higher pressure and are generally associated with lighter winds and fine and settled conditions.

Low pressure systems or mid-latitude cyclones are atmospheric circulations that rotate clockwise in the Southern Hemisphere (anti-clockwise in the Northern Hemisphere). Cyclones are areas of lower pressure and generally associated with stronger winds, unsettled conditions, cloudiness and rainfall.

Sea Surface Temperature (SST) - the temperature of the water's surface. It is usually measured using buoys, ship data, and satellites.